40/80khz Transducers Cleaning Cavitation Ultrasonic Piezo Transducer

40/80khz Transducers Cleaning Cavitation Ultrasonic Piezo Transducer
Features Gallery Product Description Request A Quote
High Light:

Ultrasonic biodiesel reactor


ultrasound transducer

Basic Infomation
Place of Origin: CN
Brand Name: CCWY
Certification: CE ROSH TUV
Model Number: CCWY
Payment & Shipping Terms
Packaging Details: CARTON
Delivery Time: On stock
Payment Terms: T/T
Supply Ability: 20.000.000 PER MONTH
Product Description


40/80khz Transducers Cleaning Cavitation Ultrasonic Piezo Transducer


40/80khz Transducers Cleaning Cavitation Ultrasonic Piezo Cleaning


In order to understand the mechanics of ultrasonics, it is necessary to first have a basic understanding of sound waves,

how they are generated and how they travel through a conducting medium. The dictionary defines sound as

the transmission of vibration through an elastic medium which may be a solid, liquid, or a gas.

Sound Wave Generation  A sound wave is produced when a solitary or repeating displacement is generated

in a sound conducting medium, such as by a “shock” event or “vibratory” movement. The displacement of air

by the cone of a radio speaker is a good example of “vibratory” sound waves generated by mechanical

movement. As the speaker cone moves back and forth, the air in front of the cone is alternately compressed

and rarefied to produce sound waves, which travel through the air until they are finally dissipated.

We are probably most familiar with sound waves generated by alternating mechanical motion.

There are also sound waves which are created by a single “shock” event. An example is thunder

which is generated as air instantaneously changes volume as a result of an electrical discharge (lightning).

Another example of a shock event might be the sound created as a wooden board falls with its face against

a cement floor. Shock events are sources of a single compression wave which radiates from the source.

The Nature of Sound Waves

40/80khz Transducers Cleaning Cavitation Ultrasonic Piezo Transducer 0

The diagram above uses the coils of a spring similar to a Slinky toy to represent individual molecules

of a sound conducting medium. The molecules in the medium are influenced by adjacent molecules

in much the same way that the coils of the spring influence one another. The source of the sound in the 


is at the left. The compression generated by the sound source as it moves propagates down the length of

the spring as each adjacent coil of the spring pushes against its neighbor. It is important to note that,

although the wave travels from one end of the spring to the other, the individual coils remain in their same

relative positions, being displaced first one way and then the other as the sound wave passes. As a result,

each coil is first part of a compression as it is pushed toward the next coil and then part of a rarefaction as 


recedes from the adjacent coil. In much the same way, any point in a sound conducting medium is 


subjected to compression and then rarefaction. At a point in the area of a compression, the pressure

in the medium is positive. At a point in the area of a rarefaction, the pressure in the medium is negative.

  1. High Mechanical Quality and excellent electro-acoustic conversion efficiency, providing a high output amplitude.
  2. Piezoelectric element offer a high speed of vibration. Through bolt-on mounting, mechanical intensity and amplitude have been improved.
  3. Having steady output amplitude even the load markedly changed.
  4. Extended using temperature, ensuring good amplitude linearity. Lower resonant impedance, ensuring high conversion efficiency.
  5. Bolt-on mounting gives the fasteasy installation and high reliability.





widely used in ultrasonic cleaning machine and high-power industry cleaning devices.

Recommended Products
Get in touch with us
Tel : 86-10-63818120
Fax : 86-10-51112989
Characters Remaining(20/3000)